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Summary 

A general theory has been developed for the application of the maximum likelihood (ML) principle 
to the estimation of NMR parameters (frequency and amplitudes) from multidimensional time-domain 
NMR data. A computer program (ChiFit) has been written that carries out ML parameter estimation 
in the D - 1 indirectly detected dimensions of a D-dimensional NMR data set. The performance of this 
algorithm has been tested with experimental three-dimensional (HNCO) and four-dimensional (HN(CO)- 
CAHA) data from a small protein labeled with t3C and ~SN. These data sets, with different levels of 
digital resolution, were processed using ChiFit for ML analysis and employing conventional Fourier 
transform methods with prior extrapolation of the time-domain dimensions by linear prediction. Com- 
parison of the results indicates that the ML approach provides superior frequency resolution compared 
to conventional methods, particularly under conditions of limited digital resolution in the time-domain 
input data, as is characteristic of D-dimensional NMR data of biomolecules. Close correspondence is 
demonstrated between the results of analyzing multidimensional time-domain NMR data by Fourier 
transformation, Bayesian probability theory [Chylla, R.A. and Markley, J.L. (1993) J Biomol. NMR,  
3, 515-533], and the ML principle. 

Introduction 

Extraction of relevant parameters (e.g., amplitudes and 
frequencies) from N M R  time-domain data has been ac- 
complished conventionally by examination of the absorp- 
tion spectrum after Fourier transformation (FT). While 
extremely successful, the estimation of N M R  parameters 
by traditional Fourier methods has two salient draw- 
backs: inaccurate amplitude estimation in overlapped 
regions of the frequency spectrum and poor frequency 
resolution when the sampled acquisition time is signifi- 
cantly shorter than the half-time for decay of the 
measured signals (truncation). The development of 3D 
and 4D N M R  experiments with short acquisition periods 
along the indirectly detected dimensions has enhanced the 

truncation problem. In many 4D experiments, for exam- 
ple, as few as eight complex points may be acquired along 
one or more of the indirectly detected dimensions. 

One approach to alleviating the poor frequency resol- 
ution inherent in the Fourier transform of truncated data 
has been to extrapolate the free induction decay (FID) by 
linear prediction (Barkhuijsen et al., 1985) prior to FT 
(Gesmar and Led, 1989; Zhu and Bax, 1990; Led and 
Gesmar, 1991; Kay et al., 1992). Although numerically 
stable and computationally efficient, linear prediction is 
sensitive to noise, can predict only a limited number of 
additional data points, and is reliable only if the number 
of  frequency components is less than one quarter of the 
number of available data points (Kumaresan and Tufts, 
1982). 

*To whom correspondence should be addressed. 
Abbreviations: FT, Fourier transformation; ML, maximum likelihood; MLD, minimum description length; FID, free induction decay. 
Software for carrying out the multidimensional M L estimation is available from the National Magnetic Resonance Facility software section of 
the Internet GOPHER utility at gopher://gopher.nmrfam.wisc.edu/1 l/Software/Chifit. 
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Bayesian probability theory in one (Bretthorst, 1990a-c) 
and multiple dimensions (Chylla and Markley, 1993) 
offers an alternative approach to NMR parameter estima- 
tion. A general D-dimensional algorithm has been devel- 
oped (Chylla and Markley, 1993) which extrapolates time- 
domain data along the constant-time dimensions of multi- 
dimensional NMR experiments. NMR data acquired with 
constant-time acquisition periods are particularly amenable 
to Bayesian analysis, because the mathematical models 
used to describe such data need not include decay rates. 

Parameter estimation by modeling the time-domain 
data with an analytical function is not unique to the 
Bayesian probability approach. The maximum likelihood 
principle has been applied to NMR parameter estimation 
in the time domain for the special cases of one (Miller 
and Greene, 1989) and two (Miller et al., 1993) dimen- 
sions. As with Bayesian probability theory, the systematic 
portions of the data are modeled in the time domain by 
a linear combination of exponentially decaying sinusoids. 
The ML principle states that the 'best' estimates for a 
given number of sinusoids are given by the set of parame- 
ters that minimizes the variance between the measured 
FID and the parameterized signal model ('least-squares' 
model). An attractive feature of ML estimation is that 
established methods exist (Marquardt, 1963; Press et al., 
1988) for searching the parameter space associated with 
the least-squares cost function. 

We present here the theory and application of the ML 
principle to NMR parameter estimation for the general 
case of D dimensions. We compare the most likely fre- 
quency estimates obtained from application of the ML 
principle to those obtained from conventional Fourier 
analysis with prior extrapolation by linear prediction. The 
results from this comparison establish a close correspon- 
dence between Fourier analysis, the ML principle and 
Bayesian probability theory as applied to frequency esti- 
mation of time-domain data. Given prior knowledge of 
the phase and decay rates, the maximum likelihood esti- 
mates of the frequency parameters are identical to the 
most probable frequencies predicted by Bayesian prob- 
ability theory. 

The development of a computer algorithm (ChiFit) 
that implements the ML procedure is described here. The 
utility of the algorithm and the ML method in general are 
demonstrated by their application to the processing of 
multinuclear 3D and 4D time-domain NMR data along 
all of the indirectly detected dimensions. A comparison is 
made between the frequency resolution obtained by the 
two approaches: FT with prior linear prediction and ML 
analysis. 

Methods 

The experimental NMR data were acquired on a 
Bruker AM-500 spectrometer, highly modified (Mooberry 

et al., 1994) to accommodate extra channels and the 
ability to apply gradient pulses to the sample. Published 
pulse and phase cycling schemes were used in collecting 
the 3D HNCO (Kay et al., 1990) and 4D HN(CO)CAHA 
(Kay et al., 1992) data. The sample was a uniformly 
(99%) 13C/15N-labeled 2.0-2.5 mM solution of subunit c of 
the H+-transporting F1F o ATP synthase, also known as 
ATP synthase (Girvin and Fillingame, 1993). The protein 
was dissolved in a chloroform:methanol:water (4:4:1) 
solvent mixture containing 50 mM NaC1. 

Data analysis was carried out on a Silicon Graphics 
Indigo (SGI) R4000 workstation running under IRIX 
4.0.5H, a version of the UNIX operating system. Fourier 
processing, linear prediction, data storage, data display 
and the production of HPGL (Hewlett-Packard Graphics 
Language) files were performed by the commercial NMR 
software program FELIX (version 2.3, Biosym Technol- 
ogies, San Diego, CA). In each case where linear predic- 
tion was performed, the number of 'poles' was set to 1/3 
of the number of experimentally measured data points. 
Mirror-image linear prediction (Zhu and Bax, 1990) was 
implemented within FELIX through the execution of 
specialized macros. ML analysis was performed by com- 
puter programs (CHIFITa and CHIFITp) (Chylla, 1994) 
written in the C programming language. HPGL files 
produced by FELIX were imported into the CorelDRAW 
(Corel Software, Salinas, CA) program. Modifications 
were made in CorelDRAW; the figures were then con- 
verted to PostScript files. The figures in this paper were 
produced by a laser printer with a PostScript interpreter. 

Theory 

The log-likelihood of the experimental data 
As with all data acquired by digital computers, NMR 

data consist of a series of discretely sampled data points: 

Y = {Yl,Y2,Y3,...,Yi} 1 _< i _< N (1) 

The starting assumption of any approach that seeks to fit 
experimental data to a parametric model is that each 
experimentally measured data point (Yi) can be expressed 
as the sum (Yi) of a systematic (signal) portion (fi) and a 
random (noise) portion (ci): 

Yi = fi -I- e i (2 )  

According to Eq. 1, the residual, i.e., the difference 
between the data and the systematic portion (Yi - fi), can 
be used as an estimate of the noise. Since the noise por- 
tion is random, probability theory can be used to quan- 
tify the likelihood of obtaining a given set of noise values, 
e = {el,e2,e 3 ..... ei}. If the number of sampled noise points 
is 'large', the distribution of the noise can be described by 
a Gaussian probability distribution: 
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- e~  

l(e) = (2n(y 2) (N/2)exPL ~ j (3) 

where c~ 2 is the variance of the noise (assumed to be known 
for now). The likelihood of the noise can be expressed 
alternatively as the likelihood of the model (systematic 
portion), conditional upon the data by substitution of the 
residual (Yi - fi) for el: 

I N 
- Z ( Y i - f i )  2 

l(fly ) = (2n~2) (N/2)exp i=1 21J 2 (4) 

Thus, an expression for the log-likelihood is obtained by 
taking the logarithm of both sides of Eq. 4, yielding: 

I N 
E ( Y i - - f i )  2 

log[l(fly)] = (_N/2)log(2nG2)_ i=l 2ry 2 (5) 

Equation 5 provides a theoretical basis for the so-called 
'least-squares' approach to model optimization. For any 
given parametric model, the log-likelihood of the model 
is maximized when the squared sum of the difference 
between the model and the data is minimized. The ML 
estimates of the parameters contained in the model are 
thus simply those parameters that minimize the numer- 
ator of Eq. 5. Given a set of parameters P, the log-likeli- 
hood can be made conditional upon the data and E 
Discarding any terms that are independent of P, the log- 
likelihood, conditional on the data and P, is given by: 

1 N 1 N 

Model for the systematic portion of multidimensional NMR 
data 

Mathematical models for 1D time-domain NMR data 
are derived from the classical description of Bloch et al. 
(1946). In this formulation, the signal portion of the data 
is modeled as a linear combination of decaying sinusoids, 
each characterized by its amplitude, Larmor frequency, 
phase, and decay rate (line width). For quadrature- 
detected, complex data, the mathematical model describ- 
ing the signal is given by 

J 
fi = • AjVji(ti[%,0j,0~j) 1 <j < J (7) 

j-1 

Vji(tilcoj,0j,0~j) = e i(mti+ ~ (8) 

where J is the total number of signals, Aj is the amplitude 
of thej th signal, Vji(tjl%,0j,%) is thej th signal function at 

point i, and [%,0j,%] are the respective frequency, phase, 
and decay rate of the jth signal. 

Equation 8 can also be expressed in its Euler form: 

Vji(til%,0j,%) - [cos(coti + 0j) + isin(coti + 0j)]e ajti (9) 

which emphasizes that this model includes known prior 
information about the nature of quadrature detection, 
i.e., that the receivers of the real and imaginary channels 
sample the data simultaneously but are out of phase by 
90 ~ Only trivial changes in the phase of Eq. 9 (Chylla 
and Markley, 1993) are necessary to describe the system- 
atic portion of the data for different methods of quad- 
rature. Vji(ti,~)ilcoj,0j,o~j) as defined in Eq. 9 thus suffices to 
describe the signal function of any 1D exponentially 
decaying sinusoid. 

To extend the above model to an arbitrary number of 
dimensions D, consider a D-dimensional, rectangular 
matrix of time-domain NMR data in which the number 
of sampled data points along each dimension d - [1,2,3, 
.... D] is defined by n,l - [nl,n2,n 3 . . . . .  nD] , respectively. The 
total number of data points, N, is given by: 

D 
N = l-Ind l_<d_<D (10) 

d=l 

The D-dimensional data set can still be viewed as a linear 
array of data points, but now each data point i corre- 
sponds to a receiver time along each dimension given by 
ti ~ [til,ti2 .. . . .  tiD ]. The correspondence between i and ti is 
determined by the method of quadrature detection (com- 
plex or real data) and the number of data points collected 
along each dimension (Eq. 10). 

With this notation, the D-dimensional model describ- 
ing the systematic portion of the data can be written as: 

J 
fi = ZAjVji(til~j,t~j,~j) l < i < N  (11) 

j=l 

D 
Vji(~i[d)j,0j,~j) = H c o s  (0)jdtid-l-0jd)e -cqatid (12) 

d=l 

where [d)j,0j,&j] are vector quantities that represent the res- 
pective frequency, phase, and decay rate of signal j along 
dimension d. The D-dimensional signal function of Eq. 12 
is thus simply the product of each of the complex 1D sig- 
nal functions (Eq. 9) along dimensions d - [1,2,3 ..... D]. 

Separation of the phase parameter from the signal func- 
tions 

The model for the systematic portion of the data (Eq. 
11) is expressed as the product of the amplitudes, Aj, and 
signal functions, Vj~(~[d)j,0j,&j). The signal functions are 
dependent upon the nonlinear vector parameters [d)j,t3j,&j]. 
The equality cos(cot + 0) = cos(cot)cos(0) - sin(cot)sin(0), 
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however, suggests that the phase parameters can be separ- 
ated from the other nonlinear parameters. Substitution of  
this equality into the systematic model of  the data yields 
K = 2 D coefficients, Bjk(Ai,0 ) ,  and K signal functions, 
gjki({il(~j,&j), f o r  each sinusoid in the model. The K coeffi- 
cients and K basis functions are given by the D-dimen- 
sional products 

K D 
2 B j k ( A j , 0 j )  = AjH (COS0jd -- sin0jd) (13) 
k=l d=l 

and 

K D 
E Ujki  (t i  1@, hi) - H [cos (0) jdtid ) + sin ( (g jd t id) ]  e -ajdtid 
k=l d=l (14) 

To eliminate the cumbersome use o f  double subscripts, a 
single subscript m can be used to represent all M - J x K 
possible combinations o f j k  where 

J K 
m e U U jk (15) 

j=lk=l 

With this notation, the form of  the systematic data be- 
comes 

M 

fi = ZBm (Am, 0m) Umi({il6m, ~m) (16) 
m=l 

Table 1 displays the relationships between the subscripts 
jk and m and the form of  Bm(Am,0m) and Umi(~ilCbm,&m) for 
the special cases of  D = one, two and three dimensions 
and J = 2 sinusoids. 

Log-likelihood of the frequency and decay rate parameters 
Separation o f  the phase and amplitude parameters 

from the frequency and decay rate parameters allows one 
to express the log-likelihood of  the frequency and decay 
rate parameters independent of  the amplitude and phase 
parameters. The first step in formulating such an expres- 
sion is to substitute the phase-independent systematic 
form of  the data (Eq. 16) into the log-likelihood of  the 
amplitude, frequency, phase, and decay rate parameters 
(Eq. 6): 

TABLE 1 
COEFFICIENTS AND PHASE-INDEPENDENT BASIS FUNCTIONS FOR ONE, TWO AND THREE DIMENSIONS a 

D K j k m B m Umi 

1 2 

2 4 

3 8 

1 1 1 A I COS(011 ) 
1 2 2 -A 1 sin(011 ) 
2 1 3 A 2 cos(%) 
2 2 4 -A 2 sin(%) 
l 1 1 A 1 CoS(Oll ) COS(012 ) 
1 2 2 -A1 sin(0n) cos(012) 
1 3 3 -A1 cos(0n) sin(%) 
1 4 4 Am sin(0.) sin(%) 
2 1 5 A z cos(021 ) c0s(022 ) 
2 2 6 - A  2 sin(%) cos(0=) 
2 3 7 -A2 cos(%) sin(0=) 
2 4 8 A2 sin(%) sin(%) 
1 1 1 A 1 cos(0n) cos(012 ) cos(%) 
1 2 2 -Am sin(0H) cos(%) cos(%) 
1 3 3 -A 1 cos(0n) sin(%) cos(013 ) 
1 4 4 Am sin(0n) sin(012) cos(%) 
1 5 5 -A l cos(%) cos(%) sin(%) 
1 6 6 Am sin(0n) cos(012) sin(013) 
1 7 7 Aj cos(0.) sin(%) sin(%) 
1 8 8 -Aj sin(0.) sin(012) sin(%) 
2 1 9 A2 cos(%) cos(0=) cos(%) 
2 2 10 -A2 sin(%) cos(0=) cos(023) 
2 3 11 -A2cos(% ) sin(022 ) cos(023 ) 
2 4 12 A z sin(%) sin(0=) cos(023) 
2 5 13 -A2 cos(%) cos(0=) sin(023) 
2 6 14 A 2 sin(%) cos(02z ) sin(023 ) 
2 7 15 A2cos(% ) sin(0=) sin(%) 
2 8 16 -A 2 sin(021 ) sin(022 ) sin(023 ) 

cos(mnq0 
sln(ol ltil) 
COS(~21til) 
Sln(o)21til) 
cos(mlitn) cos(m~2ti2) 
sln(O)ntil) cos(O)12ti2) 
cos(mllti0 sin(m12tiz) 
sm(m.ti0 sin(m12ti2) 
COS(~21til) COS(I;O22ti2) 
sm(m21tiO cos(o)22ti2) 
COS(~21til) sin(m=ti2) 
sm(to21til) sin(m22ti2) 
COS(O)lltil) COS(O)12ti2) COS(O/I3ti3) 
sln(0Jlltil) cos(t%ti2) COS(O)13ti3) 
cos(mlltil) sin(mi2ti2) cos(ml3ti3) 
sm(mlitil) sin(ml2ti2) cos(mi3ti3) 
cos(mlltil) COS(O)12ti2 ) sin(O)lgti3 ) 
Sln(~lltil) COS(0)12ti2) sin(~13ti3) 
cos(m.t~0 sin(ml2ta) sin(%3ti3) 
sln(m.ti0 sin(ml2ti2) sin(ml3ti3) 
cos(milti0 cos(mz2ti2) COS(O123ti3) 
sln(0~21til) cos(fB2fli2) cos((D23ti3 ) 
COS(m21til) sin(m22tiz) COS(0323ti3) 
sln(o~lti0 sin(mz2ti2) COS(C023ti3) 
COS(%ltil) cos(m=t~2) sin(mz3ti3) 
sln(0321til) cos(~22ti2) sin(0323ti3) 
cos(%ltn) sin(mz2ti2) sin(o~23ti3) 
sm(%iti0 sin(%2ti2) sin(mi3ti3) 

a For every D-dimensional sinusoid, indicated by the subscript j, there are (K=2 ~ coefficients (Am) and K phase-independent basis functions (Umi). 
The k~-[1,2,3,...,K] coefficients are related to the jth amplitude and jth phase of the sinusoid, as shown in the table (Eq. 14 in the text). The 
k---[1,2,3,...,K] basis functions are related to the jth frequency and jth decay rate along dimensions d~-[1,2,3,...,D], as shown in the table (Eq. 
15 in the text). Subscript m is used to represent all (M-JK) possible combinations of the pair of subscripts jk. 
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M j 2 
log [l(f[y,P)] o~ ( ~ - 2 / ~  [Yim~__l [Bm(Am, tm)Umi(ti[(lOm, (~m)] l -  I-~2 )i__~l Im~__i [Bm(am, 6m)Umi(ti[f~m, I~Zm)]l (17) 

Upon interchanging subscripts i and m, Eq. 17 can be 
rewritten as: 

Substitution of Xm/Grnrn for B m (Eq. 22) results in a 
simple expression for the log-likelihood of the frequency 

(_~2) M IN ] ( /I I 1  M ^ N ]]2 
log[l(fly, P)] o~ ZBm(Am,l~m) ZYi Umi(tilO)m,[~m) - -"~T~2--Egm(Am,0m) - E  Umi(tilf~m,(~m) 

m=l ki=l k.2~3 )Lm=l hi=1 
(18) 

Equation 18 is a set of linear equations in which B m 
are the M linear coefficients. The B m values that maxi- 
mize the log-likelihood are solved for by setting deriva- 
tives of Eq. 18 with respect to B m equal to zero. This 
procedure generates a system of M linear equations that 
can be expressed in terms of the matrix equation 

and decay rate parameters which is independent of the 
amplitude and phase parameters: 

1 ~ (Xm) 2 
1og[l(fly, C~m,&m) ] o~ "2 m=l Gmm (25) 

M 
GmlB 1 = X m (19) 

m=l 

where Xm is the projection of the data upon the basis 
functions Umi(iil6m,&m): 

N 
Xm = E yiUmi(ti](~)j'(Xj) 

i=l 

and where G is the interaction matrix given by: 

(20) 

N 
Gml = EUmi( t i l~m,l~rn)Uii ( t i l~ , ,~ l )  (21) 

i=l 

If the basis functions are sampled over a uniform time 
space and if the D-dimensional frequencies are well separ- 
ated (differences between the frequencies along each di- 
mension are large compared to the line widths along each 
dimension), then the orthogonality property of cosine and 
sine functions ensures that Gin1 approaches zero for all m 

1. Under these conditions, the inverse of the interaction 
matrix is simply the reciprocal of each of its diagonal 
terms, and the ML values for Bm(Am,t~m) are given by 

Xm 
B m - ( 2 2 )  

Gram 

Upon substituting the definitions of X m and Gram from 
Eqs. 20 and 21, respectively, the log-likelihood of Eq. 18 
can be written as: 

M 1 M M 
log[l(flY,6m,6G)] o~ •BmX m ___• EBrnBIGm 1 (23) 

m=l 2 m-I I=1 

If the assumption is made again that the sinusoids are 
well separated, then, since Gml is negligible for all m r 1, 
Eq. 23 reduces to: 

M 1 M 
log [l(f[ y, Cbm, &m) ] o~ m=lE Bnl XlI] - ' ~  in~--I (Bin)2Gmm- (24) 

Weigh ted power spectrum and weigh ted squared absorption 
spectrum as maximum-likelihood estimators of frequency 
parameters 

The log-likelihood of the frequency and decay rate 
parameters has special significance in that the M projec- 
tions of the data, Xm, over the M basis functions, 
Umi( t i [ (~ )m,~m)  , a r e  related to the complex Fourier trans- 
form of the data. For example, in one dimension (D = 1, 
K=2) for one signal (J= 1) there are M=2 basis functions 
and X m is given by: 

X m = 

N 
Yi c~ e-~ti m = 1 

i=l 
(26) 

m = 2  
N 

Yi sin(c0ti) e~ti 
i=l 

The summations appearing in Eq. 26 are simply the 
cosine and sine transforms of the data weighted by an 
exponential filter function, the decay rate of which is 
matched to the decay rate of the signal. The value of Gram 
in one dimension is given by: 

t TM 

]~ (cos(e0t i + 0i)e-~ti) 2 m = 1 
i=l 

amm = (27) 
N 

�9 -ati 2 (sln(olt i + 0i)e ) m = 2 
i=l 

1 N = ~ -~  e ~ti 

As evident from Eq. 27, Gram is dependent on the decay 
rate r but independent of the angular frequency to when 
sampled over a uniform time interval. 

Given that Gmm is a constant for a fixed decay rate ~, 
the log-likelihood of the frequency parameter o0 (Eq. 25) 
in one dimension is given by 
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log [l(fl y, d)m, &m )1 

Yi cos(coti +~i)e ~t~ + Yi sin(o~ti + ~)i) e-~ti 

1 y - -  Z e-2C~ti 
4 i=l 

(28) 

The numerator of the right-hand side of Eq. 28, however, 
is simply the weighted power spectrum evaluated at the 
angular frequency co. To extend this result to the general 
case of D dimensions, the log-likelihood of a D-dimen- 
sional frequency, 6~ - [%,C02,...,C0D], with prior knowledge 
of the decay rates, & - [{Zl,O{2 . . . . .  [~D], along each dimen- 
sion, is proportional to the D-dimensional weighted 
power spectrum of the signal evaluated at d~. This rela- 
tionship is valid under three conditions: (i) when the data 
are sampled uniformly along each dimension; (ii) when 
the data are either stationary (no decay rate) or weighted 
by &; and (iii) when the signal resonating at the D-dimen- 
sional frequency ~ is well separated from other signals in 
the spectrum. 

If both the decay rates and phases of each signal are 
known, then the phase-dependent model for the system- 
atic data (Eq. 12) can be used. The projection of the data 
over the phase-dependent basis function Vii (Eqs. 11 and 
12) is calculated for each signal in the data. This projec- 
tion is equivalent to the absorptive portion of the Fourier 
transform (linear combination of the real and imaginary 
portions of the Fourier transform weighted by cos0j and 
sin0j, respectively). For the special case in which the 
phases along each dimension are known, the log-likeli- 
hood of a D-dimensional frequency vector & is given by 
the squared weighted absorption spectrum evaluated at ~. 

Algor i thm 

The theory developed in the previous section is used 
here to apply the maximum likelihood principle to the 
tasks of signal recognition and parameter estimation in 
the analysis of D-dimensional time-domain data. As dis- 
cussed below, a separate termination criterion must be 
used for the third task of model selection. The algorithm 
described in this section has been translated into a com- 
puter program called ChiFit (Chylla, 1994). 

In this section it is assumed that the following prior 
information is available about the acquired NMR data: (i) 
the phase of signal j along dimension d (0dj), which can be 
calculated from its frequency along dimension d (COos); and 
(ii) estimated to within a factor of two of the true value, 
the mean decay rate, ~ ,  along dimension d. The phase 
and the approximate decay rates are generally known, 
since both are required to perform phase-sensitive Fourier 
processing. The phase information is needed for perform- 
ing linear phase corrections and the decay rate information 
is needed for constructing an optimal apodization func- 
tion for digital filtering prior to Fourier transformation. 

Strategy for maximum likelihood analysis of time-domain 
NMR data 

As with all methods that seek to describe data in terms 
of a parametric model, the analysis of NMR data using 
the ML principle requires the performance of three tasks: 
signal recognition, parameter estimation, and model selec- 
tion. Signal recognition is the process of finding the 'most 
likely' signals in the time-domain data. Parameter estima- 
tion is the process of assigning the 'optimal' values to the 
parameters describing each signal. Model selection is the 
process of deciding whether a particular model is more or 
less likely than an alternative model. 

The systematic portion of the data is described by a 
linear combination of approximately orthonormal basis 
functions. A consequence of this orthonormality is that 
the occurrence of one signal in the data does not drasti- 
cally limit the ability to reliably detect and accurately 
estimate the parameters of other signals in the data. The 
models describing the data, therefore, can be assembled 
incrementally, i.e., the most likely (largest) signals in the 
data can be added to the model first and the smaller 
signals obtained from the residual can be added next. 

The weighted absorption spectrum, given knowledge of 
the phases and a rough estimate of the decay rate of the 
signals, is approximately proportional to the log-likelihood 
of the frequency parameters. The weighted absorption 
spectrum thus represents a search over all frequency space 
for the most likely frequencies contained in the data. These 
considerations suggest the following strategy for perform- 
ing ML analysis of D-dimensional time-domain data: 

(i) Compute the difference between the measured data 
(Yi) and the current systematic portion of the data (fi(P)), 
i.e., the residual. If the model contains no signals (J=0), 
then the residual is identical to the measured data. 

(ii) Use prior information about the average decay rate 
and the phase correction along each of the D dimensions 
to compute the D-dimensional, zero-filled, exponentially 
weighted absorption spectrum of the residual. Select a 
suitable threshold and locate the positions of local 
maxima in the square of the absorption spectrum above 
this threshold to obtain both the number of new signals 
(A J) and initial frequency estimates for each putative 
signal j to be added to the current model. 

(iii) Use prior knowledge of the average decay rate and 
phase along dimension d, together with frequency esti- 
mates obtained from step (ii), to compute initial estimates 
for the amplitude (Aj) of signal j from the projection of 
the time-domain data over its respective signal function 
(V~, Eq. 12). 
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(iv) Perform a nonlinear least-squares optimization of 
all of the amplitude, frequency and decay rate parame- 
ters, starting from the initial estimates obtained from 
prior knowledge of the phases, the values for each of the 
parameters of the current model, and the estimates for 
the putative parameters obtained from steps (ii) and (iii). 

arrays that have lengths that are even powers of 2, how- 
ever, allows calculation of Eq. 31 in a time proportional 
to 2Nlog2N. 

When an exponential filter is applied to the data prior to 
zero-filling, Fourier transformation and phase correction, 
the result is the zero-filled, weighted absorption spectrum: 

2NFN ] 
s(YI~) = k~__l [i=~l yi[COS(~k)COS(COkti)- sin(~k)sin(cokti)]e -~ti 

(v) Use some type of termination criterion to decide 
whether the putative model containing (J + A J) signals 
and (P + AP) parameters (fi(P + AP)) is more or less likely 
than the current model containing J signals and P para- 
meters (fi(P)). If the putative model is 'more likely' than 

(32) 

The D-dimensional form of the real absorptive portion of 
the weighted Fourier transform is simply the summation 
of the data points over the product of the phase-cor- 
rected, exponentially weighted cosine and sine transforms 
along each dimension: 

NI~ ] 
A(yt &k, 0k, &) = ~ Yi l'-[ [ COS(0ka) COS(cokdtia) - sin(0ka) sin(cokatia)] e -aat id  

i=l [_d=l 

(33) 

the current model, then replace fi(P) with fi(P + AP) and 
proceed to step (i) to execute an additional cycle of the 
algorithm. If the putative model is less likely than the 
current model, then terminate the algorithm. 

Each of these steps is explained in more detail below. 

Computation of the D-dimensional weighted absorption 
spectrum of the residual 

For a discretely sampled vector of N data points, y = 
[Y~,Y2 ..... YN], the discrete Fourier transform F(y,k) at a 
frequency of cok is given by the summation 

N 

F(yIcok) = •yi[cos(cokti) -- isin(cokti)] (29) 
i=I 

If the phase of the signal Ok resonating at frequency cok is 
known, then the real absorptive portion of the transform 
A(y[cok,0k) can be calculated from the appropriate combi- 
nations of the cosine and sine transforms: 

N 

A ( y [  co k, Ok ) z COS(0k)  Z Yi COS(cokti ) 
i-1 

N 

- sin(0k)IIYi sin(cokti) 
i=l 

(30) 

The zero-padded absorption spectrum s(y) is represented 
by a series of summations given by Eq. 30 over an angu- 
lar frequency grid of 2N points, covering the range 
-~  < co < rc (complex data): 

2N 

s(y) = UA(yICOk,0k) --rt<cok<rC (31) 
k=l 

The form of Eq. 31 suggests that the calculation time of 
the discrete Fourier spectrum is proportional to 2N 2. The 
use of the fast Fourier transform (FFT) on time-domain 

Because the basis functions along each dimension are 
approximately orthonormal, the summation of the data 
over the product of the basis functions can be calculated 
as the product of the summations along each dimension. 
In the ChiFit algorithm, the D-dimensional absorption 
spectrum is calculated as D consecutive series of one- 
dimensional transforms, given by Eq. 32. 

Signal recognition from the absorption spectrum 
Given knowledge of the phase and decay rates, the D- 

dimensional, exponentially weighted, absorptive portion 
of the Fourier transform A(yld)k,t3k,&) is proportional to 
the log-likelihood of a D-dimensional frequency 6) k. The 
D-dimensional weighted absorption spectrum s(yl&) can 
thus be viewed as a search over the entire D-dimensional 
frequency space for the most likely frequencies contained 
within the data. If there are no signals in the data, i.e., if 
the FID represents purely random noise, the average 
power of the noise is estimated from the mean squared 
magnitude of the absorption spectrum g Z ( y l & ) ,  where 

1 2N 
g2(y[&) = ~ ~2 A2(yld)k,~k,&) (34) 

k=l 

It is logical to assume, therefore, that sufficient evidence 
for a signal resonating at a particular D-dimensional 
frequency 6) k exists if A(yl(0k,0k,&) is significantly larger 
than g2(y[&). 

The ChiFit algorithm uses a threshold criterion to 
determine whether or not s(y[&) contains evidence for a 
signal resonating at cb k. A maximum at d) k is added to the 
putative model if the inequality 

A2(yl(Ok,l~k,&) > c~2g2(y[&) (35) 

is satisfied, where cy is a constant set at 5. Definitive 
evidence for d) k is considered to exist when ~= 5. If Eq. 35 
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is not satisfied for all &k, then the ChiFit algorithm adds 
one putative signal to the model, resonating at 6max, the 
frequency at which A2(yl&k,0k,&) reaches a global maxi- 
mum. 

If Eq. 35 with ~=5 is satisfied for more than one value 
of 6k, an additional criterion must be met before a signal 
resonating at d}k is added to the model. One of the as- 
sumptions needed to equate A2(yl&k,()k,&) with the log- 
likelihood of the frequency parameters was that each of 
the signals is well separated from other signals in the 
model. ChiFit employs a local maximum test to determine 
whether a frequency is well separated from other putative 
frequencies in the residual. A signal resonating at a fre- 
quency &k that satisfies the threshold criterion of Eq. 35 
is added to the model if A2(y]~k,l}k,&) is the largest value 
within a D-dimensional rectangular region of four grid 
points wide, relative to the position of ink' 

Obtaining initial estimates for the amplitudes 
The kJ putative signals added to the model in step (ii) 

of the algorithm are assigned decay rates equal to the 
average decay rate and phases as determined by the 
known frequency dependence of the phase and the fre- 
quency estimates along each dimension. The frequency, 
phase, and decay rate estimates obtained for each signal 
are sufficient parameters to calculate the basis functions 
given by Eq. 12. Amplitudes that satisfy the linear matrix 
equation 

J 

Z HJ kAk = Lj (36) 
j=l 

are assigned to each of the AJ signals. In Eq. 36, Lj repre- 
sents the projection of the data over thejth basis function 
Vjt (Eq. 12): 

N 
Lj = • yiVji({ilfI)j,(~j,&j) (37) 

i=l 

and I t  is the interaction matrix defined by 

N 
HJ k = Z Vj(~]@6j,&j) Vk(tilf~t)k,~k,&k) (38) 

i=l 

Vector A in Eq. 36 is solved for by inverting the interac- 
tion matrix by Gauss-Jordan elimination (Press et al., 
1988), followed by forming its matrix dot product with 
the L projection vector. 

Nonlinear least-squares optimization of  the frequencies, 
amplitudes and decay rates 

The maximum likelihood estimates for the frequencies, 
amplitudes and decay rates are obtained from nonlinear 
least-squares optimization of Eq. 6 by a modified Leven- 
berg-Marquardt method (Marquardt, 1963). The method 
is iterative and, starting from initial estimates for each of 
the parameters of the model, it calculates parameter 
increments that lower the variance of the residual, ~t a, 

where 

N 
~I12 = Z ( Y i - f i )  2 

i=l 

l = Yi-  E AjVji (ti, (bildlj, 6j, &j) 
i=1 j=l 

(39) 

The parameter increments are derived from calculations 
of the first and second derivatives with respect to each of 
the parameters [Aj,~j,&j]. The algorithm terminates when 
two sets of parameter estimates yield ~2 values that differ 
by less than 0.1%. 

Assuming that the phases are known (calculated or 
determined from manual phasing of the Fourier trans- 
form), each sinusoid is defined by one amplitude and in 
each dimension by a frequency and a decay rate. Thus, a 
D-dimensional model containing J sinusoids is character- 
ized by Q--J(I+2D) parameters. Fewer parameters are 
required if one or more of the dimensions is recorded 
with a constant-time acquisition period which does not 
require a decay rate parameter. The partial derivatives of 
~2 with respect to each of the Q parameters Pq are calcu- 
lated from the projections of the residual against the 
analytical derivatives of fi with respect to Pq: 

a~t,2 N afi 
- oc E ( Y i -  fi) ------ Pq �9 [Aj ,@j ,&j ]  (40) 

apq i=l OPq 
D 

gji = l - I (g j i )d  (41) 
d=l 

afi 
= gji (42) 

3Aj 

afi Z 0(gji  )_______ca - Aj H (vii) ~ )~ a d (43) 

Ofi D O(gji) d 
3%d - Ajl-I (Vj~)x )v,  d (44) 

)v=l ~O~jd 

O(Vji )d -- 

~(0jd 
sin(mjatid + 0jd + *id)(  e-~jatia )tid (45) 

a(Vji)d 
0o~j d - COS(f0jdtid + 0jd + (~id)(e -2ajdtid)tid (46) 

The second partial derivative of ~2 with respect to the pa- 
rameters Pq and Pr is calculated from the approximation 

aP~ap~ ~=1 la-~ jL~7 j (47) 

The Levenberg-Marquardt algorithm is modified by 
placing constraints on the allowed values for the decay 



253 

rates. Upper  and lower bounds on the decay rates are 
necessary because the decay rates are poorly determined 
by the truncated data. 

Termination criterion used in model selection 
The least-squares or M L  criterion can be used to per- 

form parameter estimation, given the prior ability to 
perform signal recognition, but it cannot be used in the 
task o f  model selection. The primary question of  model 
selection is whether, given the data and any prior infor- 
anation, a particular model that contains (P+AP) parame- 
ters, f(~i,~)iiP+AP), and yields a residual variance of  

2 ~v+~P, is more or less probable than a model containing 
P parameters, f(~j, ~j[P), that yields a residual variance of  
V~. The mere fact that 2 ~PP+AP may be less than f(ti,(~i[P) 
is not  sufficient evidence to conclude that the model con- 
taining P + A P  parameters is the more likely model. This 
model has AP greater degrees of  freedom and is thus 

expected to produce a lower residual variance (Z2), re- 
gardless of  whether the addition of  the extra signal(s) is 
statistically significant. 

In the algorithm described above, the task of  model 
selection becomes one of  establishing a termination cri- 
terion for deciding when to stop adding signals to the 
model describing the systematic port ion o f  the data. One 
can imagine at least three different criteria that can be 
employed: 

(i) Prior knowledge of  the number of  expected signals 
can be used to determine the number of  sinusoids in the 
model. 

(ii) Because the algorithm adds stronger signals with 
large amplitudes prior to weaker signals with small ampli- 
tudes, a minimum threshold amplitude can be employed. 
The algorithm can stop adding sinusoids when the ampli- 
tudes o f  any nascent sinusoid(s) drop below this thresh- 
old. 
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Fig. 1. Contour plots through a 3D HNCO data set processed by Fourier transformation of a 2D 13C-15N slice enhanced by linear prediction. The 
sample was a 2 mM solution of a subunit c of ATP synthase, labeled uniformly with ~3C and ~SN. The data, of variable resolution (as noted below), 
were first digitally filtered, zero-filled, Fourier transformed, and phased along the amide proton (acquisition, t3) dimension. The two-dimensional 
t~,t2 slice was extracted from the absorptive portion of the spectrum at ~ = 8.59 ppm. The digital resolution of the slice was (a) 128 x 64; (b) 64 x 64; 
(c) 64 x 32; and (d) 32 x 32 data points along the ~3C (t~) and ~SN (t2) dimensions, respectively. The tl,t 2 slice was processed first by transformation 
of the ~3C dimension into the frequency (c01) domain. The ~N (t2) dimension was then extrapolated from n 2 to 2n 2 points by mirror-image linear 
prediction, as described in the Methods section. A cosine-squared bell apodization function of width equal to 2n 2 points was applied to the data, 
followed by zero-padding to a length of 64 complex points, Fourier transformation, phase correction, and discarding of the dispersion spectrum. 
The ~3CO (t 0 dimension was then transformed back into the time domain, extrapolated from n E to 1.5n~ points by linear prediction, apodized using 
a 32 complex point cosine-squared bell digital filter, zero-padded to a length of 128 complex points, and further processed analogously to the ~SN 
dimension. The footprints labeled A-L that are superimposed on the absorption spectra represent the widths and center positions of the most 
intense peaks present in the spectrum with the highest digital resolution (spectrum a). 
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Fig. 2. Contour plots of a 2D '3C-15N slice, enhanced by maximum likelihood analysis. The data sets were the same ones as used in Fig. 1. The 
number, frequency, amplitude and decay rates of each of the signals in the 2D 13C-15N (tl,t2) slices at different digital resolution (a-d, as described 
in Fig. 1) were estimated by the maximum likelihood (ML) algorithm described in the text. The parameter estimates obtained from ML analysis 
were used to replace the experimental data with a synthetic data set of resolution 256 x 128 along the 13C (tl) and 15N (t2) dimensions, respectively. 
Each dimension was then apodized using a cosine-squared bell apodization function, zero-filled, Fourier transformed, and phased. After Fourier 
transformation and phase correction, the dispersive portions of each of the spectra were discarded. The footprints labeled A L that are superim- 
posed on the absorption spectra represent the width and center position of the most intense peaks present in the spectrum with the highest digital 
resolution (spectrum a). 

(iii) Information theory can be used to determine 
whether f(~i,~ilP+2~P) is a more likely model than 
f(ti,~ilP). One statistic designed for this purpose is the 
minimum description length (MDL) criterion (Reddy and 
Birader, 1993): 

MDL = N ln(~ 2) + P ln(N) (48) 

where N is the number of data points, ~t '2 is the sum of 
the squares of the residual (~2), and P is the number of 
free parameters contained in the model. 

ChiFit can use the third option with the ML statistic, 
i.e., the most likely model is the model that minimizes 
MDL. The ChiFit program stops adding signals to the 
model for the systematic portion of the data when a 
model f(tilP+AP) with a )~2 value of ~t'2+~ has a higher 
MDL value than a model f(tilP) with a X 2 value of ~2. 

Data 

To compare the results of different processing tecb- 

niques, synthetic data sets using exponentially decaying 
signals with added white noise are often chosen as 
example data sets. The weakness in this approach is two- 
fold: (i) the decay rates of NMR signals are not always 
strictly exponential; and (ii) white noise is a simplistic 
model for the noise found in real NMR experiments. In 
addition to random noise, noise in NMR experiments 
arises from a variety of sources, e.g. incomplete cancella- 
tion of extraneous magnetization by phase cycling, initial 
time point artifacts, spectrometer instabilities, etc. Taking 
this into consideration, it is desirable to compare the 
results of applying different processing techniques to 
experimentally recorded data sets which have more 'realis- 
tic' properties. 

To compare the frequency resolution obtainable by 
ML analysis to that obtainable by the present standard 
technique (linear-prediction-enhanced Fourier transform- 
ation), we have applied the processing methods to the 
enhancement of the indirectly detected dimensions of two 
experimental protein data sets: 3D HNCO and 4D 
HN(CO)CAHA data from subunit c of the FxF 0 ATP 
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synthase (8 kDa), also known as the DDT binding pro- 
tein (Girvin and Fillingame, 1993). The results of this 
comparison are displayed in Figs. 1 and 2. Each type of 
analysis was performed four times: first upon a high- 
resolution FID with a data point resolution of 128x64 
(t~,t2) and subsequently on subsets of the same data set 
with decreasing resolution along t~ and t 2. The rationale 
for processing the same data set with varying degrees of 
artificial truncation was to quantify how many of the 
signals resolved in the original data set were still resolved 
when both the signal-to-noise ratio and the frequency 
resolution of the time-domain data were decreased. 

Figures 1 and 2 display contour plots of a 2D 13CO-15N 
(tl,t2) slice of the absorptive portion of the amide proton 

(acquisition) dimension at 0)3=8 .59  ppm, extracted from 
the 3D HNCO data. Although the sample, ATP synthase, 
is a relatively small protein, it consists predominantly of 
c~-helical regions and thus exhibits poor chemical shift 
dispersion in its amide proton and amide nitrogen chemi- 
cal shifts. In Figs. 1 and 2, the resolution of the 2D FID 
prior to linear prediction was (a) 128x64; (b) 64x64; (c) 
64x32; and (d) 32x32 data points along the carbony113C 
(q) and amide 15N (t2) dimensions, respectively. Figure 1 
shows the implementation of the linear-prediction pro- 
cedure (other processing details are given in the legend to 
the figure) and Fig. 2 displays an analogous series of 
contour plots which represent the absorption spectrum of 
exactly the same data sets after enhancement of the time- 
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Fig. 3. Contour  plots of slices through a 4D HN(CO)CAHA spectrum processed by Fourier transformation, enhanced by linear prediction. The 
protein sample was that  described in Fig. 1. The three panels correspond to the (a) ~HNJSN; (b) 1HN-H~; and (c) 1HN-~3C ~ planes intersecting 
the point [HN = 8.46, I5N = 117.9, I H ~ =4.97, ~3C~= 57.8] ppm in the 4D spectrum. The original 4D time-domain data (256 x 32 x 16 • 16 points) were 
first digitally filtered, zero-filled, Fourier transformed, and phased along the amide proton (acquisition, t4) dimension. The dispersive portion of 
the amide proton dimension was discarded, yielding a matrix of 256 • 32 x 16 • 16 (f24,tE,t2,t3) data points. Each of the 256 three-dimensional t~,tz,t3 
slices was processed as follows. The ~SN (t 0 and H ~ (t2) dimensions were first transformed into the frequency domain, without apodization or zero- 
filling, yielding 16 • 8 complex points in the ~ and f22 dimensions, respectively. The ~3C (t3) dimension was extended from 8 to 15 complex points 
by mirror-image linear prediction, as described in the Methods section. The t 3 dimension was then processed with cosine-squared bell apodization, 
zero-filled to 64 complex points, Fourier transformed, and phased. After phasing, the dispersive portion of the spectrum was discarded. The ~HN 
(t2) dimension was then inverse Fourier transformed and processed analogously to the t 3 dimension. Finally, the ~SN (tO dimension was inverse 
Fourier transformed and extrapolated from 16 to 24 complex points by linear prediction. Subsequent to linear prediction, the t~ dimension was 
processed analogously to the other indirectly detected dimensions. The resolution of the final 4D (f24,g2~,g22,~3) matrix was 256 x 64 x 64 x 64 data 
points, respectively. 
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Fig. 4. Contour plots of slices through a 4D HN(CO)CAHA spectrum, enhanced by ML analysis. The 4D time-domain data used were the same 
as described in Fig. 3. The processing of the amide proton (acquisition) dimension was performed as described in Fig. 3. Each of the 256 three- 
dimensional q,t2,t3 (32x 16x 16) slices was processed as follows. The number, frequency, amplitude and decay rates of each of the signals in the 
3D ~SNH~-J3C slices were estimated by the maximum likelihood (ML) algorithm described in the text. The parameter estimates obtained from the 
ML analysis were used to replace the experimental data with a synthetic data set of resolution 64 x 64 x 64 along each of the indirectly detected 
dimensions. The dimensions were then each apodized using a 32 complex points cosine-squared bell apodization function, zero-filled to 64 complex 
points, Fourier transformed and phased. After phase correction, the dispersive portions were discarded. The resolution of the final 4D (~4,~1,~2,f~3) 
matrix was 256 x 64 x 64 x 64 data points, respectively. 

domain data by ML analysis, using the ChiFit algorithm 
described in the previous section. 

From prior information about the phase corrections 
and the average decay rates along each dimension, ChiFit 
obtained the M L  estimates for the number of  sinusoids 
and their respective frequencies, amplitudes and decay 
rates along each dimension. Because the t2 dimension was 
recorded with a constant-time acquisition period, the 
model describing the systematic portion of  the data did 
not  contain a decay rate for this dimension. The M D L  
statistic described in the previous section was used as the 
termination criterion for the algorithm. The parameter 
estimates obtained from the ML analysis were used to 
replace the experimental data with a synthetic data set o f  
resolution 256x128 along the 13C and ~SN dimensions, 
respectively. Each dimension was then processed by con- 
ventional Fourier processing methods, as described in the 
legend of  Fig. 1. 

A set of  footprints labeled A L are superimposed on 

the contour  plots o f  both Figs. 1 and 2. The footprints 
represent the widths and center positions of  the most 
intense peaks present in the best resolved spectra (Figs. la 
and 2a). The frequency positions of  these signals are 
assumed to be the ' true'  values in the truncated spectra. 
The existence of  a maximum within a given footprint in 
a spectrum derived from a truncated data set was the 
criterion for considering that signal to be 'resolved' in 
that spectrum. 

Visual inspection of  the contour  plots in Figs. 1 and 2 
indicates that the ML-enhanced data sets have a greater 
number of  resolved signals than the corresponding data 
sets that were processed by linear prediction. For 
example, al though the frequency positions of  signals D 
and I in Fig. 2b (64x 64, tl,t2) are somewhat distorted 
from their ' t rue'  positions, the two signals are completely 
unresolved in Fig. lb. The cluster of  five peaks (G-I-J-K- 
H) is very poorly resolved in Fig. ld, whereas the same 
cluster is much better resolved in Fig. 2d. 



The algorithm described in the previous section is 
general for any number of D dimensions. As an example 
of higher dimensional processing, ChiFit was used to 
perform a three-dimensional analysis of the 15NH~-13C 
[tl,t2,t3] dimensions derived from the 4D HN(CO)CAHA 
data set from the same protein. The data were collected 
with a time-domain resolution of 256x32x16x16 data 
points along the respective [t4,tl,t2,t3] dimensions. The H ~ 
and ~3C dimensions had shared constant-time acquisition 
periods (Kay et al., 1992). 

Figures 3 and 4 compare contour plots of the (a) HN- 
~SN; (b) HN-H~; and (c) HN-13C 2D absorption spectra 
derived from data processed by the two methods. The 
data in Fig. 3 were obtained by linear prediction extrapo- 
lation of each of the indirectly detected dimensions separ- 
ately. The time required to process the entire 4D data set 
using linear prediction was 32 h on an SGI R4000 work- 
station. The series of three absorption spectra represent 
2D cross sections of an unresolved HN(CO)CAHA corre- 
lation at [HN=8.46, 15N=117.9, 1H~=4.97, 13C=57.8] 
ppm. The data in Fig. 4 were obtained by using ML 
analysis to replace each of the 32x16x16 15NH~-13C 
[tl,t2,t3] regions with ML-derived synthetic data with a 
resolution of 64 x 64 x 64 data points. The time required to 
process the 256 [h,t2,t3] regions was 18 h on the SGI 
R4000 workstation. An additional time period of 12 h 
was required to apply Fourier methods to the transform- 
ation of the time-domain data. The ML-enhanced spec- 
trum (Fig. 4) contains evidence for a signal that is not at 
all resolved in the corresponding spectrum that was 
enhanced by linear prediction (Fig. 3). 

Discussion and Conclusions 

By using a Gaussian noise prior probability and Bayes' 
theorem, Bretthorst (1990c) has shown that for the case 
of one-dimensional NMR data consisting of stationary 
(no decay), well-separated sinusoids, the power spectrum 
(squared magnitude of the Fourier transform of the data) 
evaluated at a given frequency co is proportional to the 
logarithm of the probability that the data contain a signal 
of frequency co. This probability is independent of the 
amplitude or phase of the signal. This result has been 
extended to the general case of D dimensions (Chylla and 
Markley, 1993). Bayesian probability theory also states 
that the weighted power spectrum (squared magnitude of 
the Fourier transform of exponentially weighted data) is 
an optimal estimator of frequency when the line width of 
the well-separated decaying sinusoids in the data match 
the filter width of the exponential weighting function. 
Although they did not derive a relationship between the 
discrete Fourier transform and the log-likelihood of the 
noise, Miller and co-workers used the absorptive portion 
of the Fourier transform in one (Miller and Greene, 1989) 
and two dimensions (Miller et al., 1993) to obtain esti- 
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mates of NMR parameters as an initial step of ML esti- 
mation. We have derived here, for the general case of D 
dimensions, a relationship between the weighted power 
spectrum and the log-likelihood of the frequency parame- 
ters, independent of the phase and amplitude parameters 
when prior information about the decay rates is available. 
We have also shown that the weighted absorption spec- 
trum is proportional to the log-likelihood of the fre- 
quency parameters, independent of the amplitudes when 
the phases and decay rates of the signals are available 
from prior knowledge. In doing so, we have established 
a strong correspondence between Fourier analysis, Baye- 
sian probability theory, and ML estimation as applied to 
the task of frequency estimation. When the amplitudes of 
the systematic portions of the data are constrained to 
their ML values, then Bayesian probability theory and 
ML estimation yield identical estimates for the most likely 
frequencies contained within the data. 

As presented above, we have implemented the ML 
method in a computer program, ChiFit. The procedure 
assumes prior knowledge of the phases and an estimate of 
the mean decay rate along each dimension. The algorithm 
predicts the number, frequency, amplitude and decay 
rates of the signals in each of the indirectly detected di- 
mensions after prior Fourier transformation of the acqui- 
sition dimension. The truncated experimental data along 
the indirectly detected dimensions are then replaced with 
extrapolated synthetic data, derived from the ML esti- 
mates of the corresponding experimental data. Sub- 
sequent Fourier transformation of the indirectly detected 
dimensions thus yields spectra with enhanced frequency 
resolution. The results presented here show that the 
approach can be implemented in a practical way on cur- 
rent computer workstations. Comparison of experimental 
triple-resonance 3D and 4D data demonstrates that the 
ML approach can resolve frequencies in truncated data 
that conventional processing techniques cannot. 

In this work we have used the ML method in the same 
fashion that linear prediction is conventionally used, i.e., 
to extrapolate truncated time-domain data prior to digital 
filtering, zero-filling, and subsequent Fourier transform- 
ation. The final estimation of the number, frequency and 
amplitudes of each of the signals in the spectra, enhanced 
by both linear prediction and ML analysis, was perform- 
ed by automatic 'peak picking' of all the peaks in the ab- 
sorption spectrum above a certain threshold (results not 
given here). ML analysis was thus used to improve upon 
parameter estimation but was not, in the end, used to 
perform signal recognition or model selection. This lim- 
ited use of ML estimation is by no means its most effi- 
cient or optimal implementation. Because ML estimation, 
in conjunction with Fourier transformation and informa- 
tion theory, is capable of performing the tasks of signal 
recognition, parameter estimation and model selection, 
the optimal use of ML estimation would be in carrying 
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out the task of  predicting the number, frequency, ampli- 
tude, and decay rates o f  each signal in the entire multidi- 
mensional data matrix for all dimensions. Adapting the 
M L  algorithm presented here to this more general task in 
a practical period o f  time is an active area of  current 
research. The direct extraction o f  relevant N M R  parame- 
ters from large, multidimensional data sets of  proteins, in 
conjunction with robust automated assignment software 
(Olson and Markley, 1994), could provide a completely 
automated pathway from the acquisition o f  N M R  data to 
full assignments of  resonances and to structural analysis. 
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